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-. ~ABSTRACT: We present a method for calculating elastic and inelastic scattering prob--..

~~abilities for light particles, such as helium and molecular hydrogen, scattering from surfaces"-

'i with which they weakly interact. The method is a unitary one-phonon approximation in

~~which the scattering probabilities are calculated from thermally averaged amplitudes which-.

are generated numerically. The thermal averaging procedure is more general than this ap- -

"" plication and could be applied to other systems with weak inelastic scattering. We also

K discuss an approximation for the gas-surface interaction potential that can greatly simplify .

' calculations where it is applicable. Finally we present some preliminary results using this

CA . method to study rotationally mediated selective adsorption resonances in HD scattering

'. from copper.
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I. INTRODUCTION

In all experiments in which helium or molecular hydrogen are scattered from single

crystal surfaces both inelastic scattering and selective adsorption resonances are present

and can have an important effect on the elastic scattering. As the resolution of these

experimemts has improved not only is it possible to extract, from the elastic scattering,

kinematical information like diffraction peak positions and selective adsorption energies but

it has become possible to extract dynamic information like the diffraction peak intensities

and the resonance lineshapes. It also has become possible to investigate inelastic scattering

processes leading to an understanding of the full gas-surface interaction. To interpret these

experiments and to compare the results with calculated potential energies it is necessary

to be able to accurately describe the dynamics of the scattering process. In this paper

we present a method for calculating scattering probabilities that can treat both inelastic

scattering and selective adsorption resonances in the presence of the other. By studying

inelastic molecular hydrogen scattering, in particular the effects of the rotational degrees of

freedom on the scattering process, we hope to both describe these scattering experiments

and discuss qualitatively how selective adsorption resonances and inelastic scattering affect

each other in more general scattering situations.

This method is a unitary one-phonon approximation. Unitarity, i.e., that the sum

of all the calculated scattering probabilities is one, is necessary for studying the thermal

attenuation of the elastic scattering probability and for studying the coupling of selective

adsorption resonaces and inelastic scattering. As we showed in a previous paper' inelas-

tic scattering is greatly enhanced by selective adsorption resonaces, so much so that the

distorted wave Born approximation breaks down. This breakdown is caused by the over-

counting of scattering events that is inherent in the Born approximation, and is corrected

for in this new approximation by removing the overcounting. In spite of the breakdown of

2 . .
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the distorted wave Born approximation at selective adsorption resonances a one-phonon

approximation is still the appropriate approach for studying helium and molecular hydro-

gen scattering because away from resonance the inelastic scattering probability is still weak,

so that once a resonant particle scatters inelastically its subsequent scattering probability

is low.

In the experiments 2 we wish to describe, the scattering of H2 ,3 HD, 4 and He,' the -

low masses and moments of inertia of these particles cause those particles that diffract

or undergo rotational transitions to leave the surface in well separated directions. This

angular separation allows the detection of these effects simply by changing the relative angle

of the detector with respect to the substrate and source. Further, since the physisorption

potentials wells are shallow, the bound states for these particles are well separated in

energy and can be observed in these experiments through selective adsorption resonances.

Selective adsorption resonances are observed in the intensity of outgoing scattering peaks

as a function of the incidence condtions. They are due to virtual diffractive or rotational

transitions into bound states and are caused by either the corrugation of the surface or its

translational- rotational coupling.

While the inelastic scattering for these systems is weak enough to allow the obseravtion

of coherent elastic scattering effects, it is not negligible nor unobservable. The kinematical

constraints of the scattering process permit single Rayleigh phonon creation and absorp-

tion events to be seen in the time of flight spectra of helium atoms. 5 Rayleigh phonons

are normal modes of a semi-infinite surface that are localized to the surface; for a given

wavevector parallel to the surface they have an energy that is lower than all the bulk

phonon energies. The dispersion relation of the Rayleigh mode with respect to the par-

allel monenturn allows the identification of various time-of-flight peaks as single Rayleigh

phonon transitions. In the case of molecular hydrogen scattering the decreased energy res-

olution and the increased inelastic scattering probability make it more difficult to observe

3
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single-phonon peaks experimentally. The stronger van der Waals attraction felt by the

hydrogen molecule, compared to the helium atom, causes the molecule to scatter from a

steeper part of the repulsive potential6 which increases the inelastic scattering. Increased

I..I multiphonon scattering masks single-phonon peaks in the time of flight distributions. An-

other aspect of inelastic scattering of current experimental interest is the degree to which

the rotational degrees of freedom of molecular hydrogen affect the rate of sticking in either

physisorption 7 or chemisorption 8 states. One-phonon calculations can describe the initial

trapping step, when the sticking procedes through such a step. But to completely describe

the sticking process it is necessary to describe the transition of a trapped particle into a

stuck particle, 9 and that is beyond the scope of the current method.

The simple scattering behavior of helium and molecular hydrogen allow straight-

forward calculation of the scattering rates. The small observed number of elastic and

internally inelastic channels makes coupled channels calculations practical while the low

inelastic scattering probabilities mean one-phonon-change calculations are relevant to the

description of the scattering process. For heavier atoms and molecules both the number

of elastic channels, which are not well separated experimentally, that have to be included

and the increased inelastic scattering make both the observation and the calculation of

elastic and inelastic scattering more difficult.

In many ways the present calculation is related to a long line of previous calculations

but it has some new features. To describe the translational-rotational coupling we use a

coupled channels approach in which the wavefunction is expanded in the spherical hamonics

so that the rotational behavior is calculated using a discrete set of states instead of a

continuum. The coupled channels description of scattering from a static substrate has been

used to very accurately describe both helium 10 and molecular hydrogen 1 experiments.

The main point of such calculations has been to extract the particle-surface potential

from the e . rimental scattering intensities. Since direct inversion of experimental data
4

%4

, * - . . . .. - "7. . ... -, .- - . . . .-.- / ./.?-.. ': ," - ' " " ""... . " ' " " """ '".... ..



to generate the potential is impossible, it is necessary to search through possible potentials

to find the one for which the calculated scattering probabilities best match those observed

experimemtally. Alternatively the bound state energies, extracted from slective adsorption

resonances, can be used to determine the potential. Provided both that the coupling that

leads to the resonances is weak and the resonances are well separated from each other,

the bound state energies can be extracted from the energies of the resonances using the

kinematics of the scattering process. If these conditions are not satisfied then either a full

coupled channels calculation or its equivalent is required to match the experimental and

calculated resonces.

Inelastic gas-surface scattering probabilities have been calculated in many ways rang-

ing from classical 12 to fully quantum mechanical. Between these two extremes, the lat-

ter of which is discussed in more detail below, calculational approaches have included

wavepacket calculations 13 (both for elastic and inelastic scattering), and various semiclas-

sical calculations 14 in which the motion of the scattering particle is treated classically and

the phonons are treated quantum mechanically.

For helium and molecular hydrogen, quantum mechanical calculations are the most

valid approaches due to both the quantum mechanical nature of the elastic scattering pro-

cess and the discrete nature of the one-phonon-change scattering process. The simplest

quantum mechanical approach is the distorted wave Born approximation, 5 which is a

Fermi's golden rule approach. The rate for transitions caused by the creation or absorp-

tion of single phonons, is calculated between scattering state eigenfunctions of the fiat

static surface. The eigenfunctions that are used in these calculations depend only trivially

on all of the degrees of freedom except the motion normal to the surface. This golden

rule approach can be used to include higher order phonon processes but unless further ap-

proximations are made the resulting calculations are difficult to carry out.1 6 As computing

power has increased distorted wave Born approximation calculations have been carried out

• ". "' " " " " " -" " "- "-



using eigenfunctions in which several of the degrees of freedom are coupled, for instance

eigenfunctions of corrugated static surfaces17 and surfaces with translational-rotational 

coupling. 1 The approach we are using in this paper is related to these extended distorted

wave Born approximation calculations in that we treat the rotational diffraction on an

equal footing with the elastic scattering. -.'

The distorted wave Born approximation is less appropriate for calculating the elastic

scattering probabilities when they are changed by the possibility of scattering inelastically.

The simplest calculation of the elastic scattering probability under these conditions is

to multiply the scattering probabilities by a Debye-Waller-like factor.18 Another relatively

simple calculation is to add a phenomenological local optical potential 19 to the rigid surface

potential when doing a coupled channels calculation. The optical potential !imulates the

transfer of scattering probability from the elastic scattering to the inelastic scattering by

absorbing intensity from the elastic scat.ering probability. This optical potential aproach

can be improved by solving for the non-local energy-dependent self-energy2 ° that correctly

describes the elastic scattering probability. A related approach is to include inelastic

scattering in a scattering matrix calculation to study its effect on the elastic scattering

lineshapes.2 1

A unitary calculational scheme, in which all of the scattering intensity is accounted for

and sums to unity, involves an extended coupled channels calculation,22 extended in the

sense that possible inelastic transitions are included in the coupled channels calculation.

The calculation is done for several initial occupations of the lattice modes and then the

scattering probabilities are thermally averaged with respect to these initial occupations to

get scattering probabilities to compare with experiment. Since the phonon modes form

continua and any number of phonons can be created or destroyed, it is necessary to truncate

the set of inelastic processes that are allowed.

The present calculation is related to both the optical potential approach and the ex-

6



tended coupled channels approach and forms a bridge between the two. It differs from

the extended coupled channels approach in that the thermal averaging is done before

the wavefunctions are calculated; it also differs in that the solutions are calculated itera-

tively instead of at one time. The final results of this calculation for the elastic scattering

probability are identical to those of a self-energy calculation20 mentioned above but are

calculated using different intermediate quantities. In this calculation we chose to truncate

the allowed phonon-changes to include only one-phonon-change processes, but include all

the phonon modes in the lattice. We also specify how to treat the situation in which par-

ticles can trap on the surface, a situation that can cause great difficulty if sufficient care

is not taken.

We apply this method to HD scattering for two main reasons, the most important

being that experiments have been performed on this system. The other reason is that

with present computer power this method is most applicable to HD scattering. Significant

savings in computation time result from being able to ignore the corrugation of the surface, "N

as is discussed in Sec.V., and from treating broad as opposed to narrow selective adsorption

resonances, because the iterative calculations converge faster. To study selective adsorption

resonaces and inelastic scattering simultaneously and to take advantage of the time savings

mentioned above requires studying IID scattering.

This paper is organized as follows: section II gives the general derivation of the ther-

mal averaging, section III contains a unitary one-phonon-change approximation using the

results of the previous section, section IV discusses the use of stationary state scattering

results to calculate the scattering probabilities, section V gives the approximations that
mU

made on the form of the gas-surface interaction potential, section VI presents the result of

some preliminary calculations using this method, and section VII contains a summary of

the main results of this paper.
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II. THERMAL AVERAGING

In this section we show how thermally averaged scattering probabilies can be calculated

in terms of amplitudes that are already thermally averaged. This procedure does not

violate our concepts of statistical mechanics because the amplitudes for the particle are

not thermally averaged with respect to the particle but with respect to the phonons from

which the particle is scattering. We are averaging a reduced time evolution operator

with respect to the phonon coordinates; the time evolution operator has been reduced by

operating it on the initial state of the particle. We call this reduced time evolution operator

an amplitude-operator throughout this text to remind the reader that it is both an operator

on the phonon coordinates and an amplitude for the scattering particle. The thermally

averaged amplitudes are the set of the thermal averages of products of this amplitude-

operator with all possible combinations of phonon creation and destruction operators. This

amplitude-operator can be used to calculate all the properties of the particle scattering

from any surface so that all the thermally averaged properties can be calculated from the

thermally averaged amplitudes. These thermally averaged amplitudes obey a hierarchical

set of equations of motion which can be solved and used to give the thermally averaged

scattering without explicitly thermally averaging.

Our development of the amplitude-operator is based on studying the time evolution

of the state of the system. We start at some initial time (t = 0) with the scattering

particle in some initial state that is localized sufficiently far from the surface so that it

is not interacting with it, then the state of the system is given by a product ket of that

initial state, ix(o)), and the initial state of the phonons,l{n,}), which is specified by the

occupation of all the normal modes of the surface

. '1,(0)) Ix(0))I{n,}). (2.1)

The straight-forward method of calculating the thermally averaged scattering probabilities

8



is to calculate the scattering probabilities for the initial particle state scattering from each

lattice oLate in an ensemble of surfaces and then averaging the scattering probabilities

weighted by the thermal probability of each surface in the ensemble. Instead of this

procedure, we show that we can calculate the thermally averaged scattering directly from

thermally averaged amplitu!es.

The time evolution of the state of the whole system, from which the scattering prob-

abilities can obtained, is given by operating on the state (2.1) with the exponetial of the

full Hiamiltonian multiplied by the time

j~ t)elHt p'~(op. (2.2)

Since the Hamiltonian couples the motion of the scattering particle with that of the

phonons the state is no longer be a product state once the particle starts to interact

with the surface but can be thought of as a sum of product states. Below we write this

sum of states in terms of how the occupations of the phonon mcdes have changed.

A. HAMILTONIAN.

The Iamiltonian is broken into three terms: the Hamiltonian, Hiat, of the lattice in the

absence of the scattering particle, the {amiltonian, lra,t, of the particle in the absence of

coupling to the phonons, and the potential,V1i t , that couples the motion of the scattering

particle with the motion of the phonon coordinates. The particle Hamiltonian includes

both the kinetic energy of the particle and the potential that couples the particle with the

static lattice; the interaction term is the potential that couples the particle with the lattice

minus the interaction with the static lattice

1 Hi,.t + ftr-t +V", t. (2.3)

b. 9
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The weak inelastic scattering and small changes in phonon occupations allows us to describe

the lattice by a harmonic Hamiltonian because the subsequent anharmonic effects are even

smaller in a real system. In

H1at = Z wAa3aA, (2..)

the phonon modes are labelled by a composite index ,A which includes the momentum of

the mode parellel to the surface, the polarization, and either the asymptotic momentum

normal to the surface far from the surface for bulk derived modes, or the decay length into

the surface for modes that are localized to the surface.

In this section we make several approximations only to simplify the presentation. For

example, we use a Hamiltonian for the scattering particle that just consists of the kinetic

energy due to its center of mass motion and a potetial energy due to the presence of the

static lattice that depends on the position of the center of mass

p 2Hpart + V(r). (2.5)

2mr

The momentum of the center of mass is p and the postion of the center of mass is r.

Throughout this paper lower case bold face letters refer to three-dimensional vectors (e.g.

r), bold face upper case letters refer to two-dimensional vectors that are perpendicular to

the surface normal which we choose to be the z-direction (e.g. R), and italic versions of

the bold face letters are the norm of the vector (e.g. p).

For simplicity we take only that term in the interaction, V t, between the particle and

the phonons that is linear in the phonon coordinates

Vl = V3-- (r) ['a, + h.c.. (2.6)

The factor of N- 1/ 2 associated with the sum over the modes of the lattice (N is the

number of atoms in the surface) comes from writing the! displacement of each lattice atom

in terms of the normal coordinates of the lattice (see section 5 Eq. (5.4-5.6)).

10
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The procedure for thermal averaging that we present does not depend on either the

neglect of the internal degrees of freedom of the scattering particle or the exclusion of

more than the linear term in the interaction potential. We make these approximations

to improve the clarity of the presentation. In particular, later we include the rotational

degrees of freedom to study molecular hydrogen scattering.

B. TIME EVOLUTION.

Since we are not interested in the behavior of the lattice except to the extent it affects

the motion of the particle we define a quantity W that we refer to as an amplitude-operator.

It is an amplitude for the particle and an operator for the phonon coordinates with the

time dependence of the lattice factored out

In a related gas-surface scattering calcu!ation Celli and Maradudin20 use this amplitude-

operator to calculate elastic scattering probabilities in the presence of inelastic scattering.

The amplitude-operator and the time evolution operator of the uncoupled lattice give the

time dependence of the molecule scattering from any initial set of phonon coordinates when

they operate on that initial state. In particular using Eqs. (2.1, 2.2, 2.7), (rl'(t)) can be

written as

The utility of this amplitude-operator is that its time dependence is independent of the

initial state of the lattice; this independence allows the calculation of the the scattering

from any particular surface in the ensemble using just this one operator. The equation of

motion for ',

ii (r,t) Ilpart (r) 4'(r, t) -+~ (r, t) (r, t). (2.9))
d t

11

....................................



'-- -T
I

•-0 -

is obtained by taking the partial derivative with respect to time of the defining equation Eq.

(2.7). The two terms containing the lattice Hamiltonian cancel. The particle Hamiltonian

commutes with the lattice Hamiltonian. The time-dependence of the interaction potential

is that due to the non-interacting lattice

1" n t(r,t) C thVinte' - V(r)e''a + h.c.}. (2.10)

The time dependence of V,t is not that of any of the conventional approaches (Schr6dinger,

Heisenberg, or interaction picture) but is the interaction picture for the lattice, a picture

in which operators have the time dependence of only part of zeroth order Hamiltonian,

i.e., that of the lattice Hamiltonian. We choose to treat the time dependence this way

because we are only interested in the lattice time dependence as far as it affects the

particle's motion. Since the time dependence is known exactly it can be removed from the

calculation.

Since the lattice ilamiltonian commutes with any particle operator and does not change

any particle state when operating on it, we can use the amplitude-operator to evaluate the

expectation value of any particle operator. For example, consider

(P(t 1Opart I, (t)= f d3r f d3r' ({ni}l It(r, t)Opart(r, r') (r', t) t{ni}) , (2.11)

where we have inserted two complete sets of particle states (in the position representation)

around the particle operator. Note that Opart(r,r') can be taken outside of the phonon

matrix element. Since Eq. (2.11) is valid for any operator Opart, all the properties of the

scattering particle are contained in the density matrix, which is %I times its Hermitian

conjugate. Accordingly, thermally averaging the expectation of any particle operator just

involves integrating over the thermally averaged density matrix

(('F(t)O Cpart !'(t)))th f d3r J d'r' Opart(r, r') ('(r,t), (r', t)) . (2.12)

12
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Calculating the thermally averaged density matrix from quantities that are independent

of the initial state of the lattice is possible because the time evolution of the amplitude-

operator is constructed to be independent of the initial state of the lattice.

C. MULTI-PHONON EXPANSION.

To further simplify the calculation of the scattering probabilities we break up the

amplitude-operator into amplitude-operators for each of which there is a specific change in

the occupation of the lattice modes. In particular there is a term in which the occupation

of each of the lattice modes has had no net change, a sum of terms in which exactly

one mode has had a net increase or decrease of one phonon, and further terms for every

possible net change. We write these terms by explicitly factoring out all of the unpaired -

phonon operators from each term. Each phonon creation or destruction operator in the

interaction potential which lead to these changes in phonon occupations, has associated

with it both a sum over the modes of the lattice and a factor of N - 1/ 2 , where N is the

number of atoms in the lattice. We write this factor explicitly in front of the sum so that

all of the newly defined amplitude-operators are not proportional to any power of the size

of the system (see below). Thus, the decomposition of the amplitude-operator in terms of

phonon-change amplitude-operators is given by

(r, t) = Oph (r, t)

1 E[ I L (2.13)
+ 1- at (t)4Ilph(r, t, A, +) + ax(t)'1ph(r, t,,X, + ± z-(2.13)

IV, N
A AA

Each of these new phonon-change amplitude-operators can be written as a sum of terms

that are amplitudes (i.e. they contain no phonon operators) times pairs of phonon opera-

tors such that the index of both the creation and the annilation operator in each pair is

the same. Associated with each pair of phonon operators there is a factor of N-1 and a
13
13
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sum over the lattice modes. There is only one sum with each pair of operators because we

have taken only those terms in which the operators are paired; the rest of the terms from

the same applications of the interaction potential are in higher order phonon-chang,' terms

because they have more unpaired phonon operators. For example, the zero- phono-change

term can be written

''(r, t) 00ph (r, t)+ '>j Ph (r, t) a aA + ... (2.14)

All of the amplitudes and amplitude-operators discussed in this paper are independent of

the size of the system in the limit that the size of the system becomes infinite because all

sums of paired operators over 3N terms are cancelled by a factor of N - 1. Some of the

sums over lattice modes of unpaired operators should be restricted so as not to include the

terms that are counted elsewhere because of pairing, but the corrections are not important

or even relevant because all the restricted terms are negligible in the large N limit.

Since any expectation value over phonon states requires that all the phonon operators

must be paired to give a non-zero result, the thermally averaged density matrix can be

written as a sum of the thermal averages of the square of each phonon-change term

N A )[tP'I h (215

+ ~'P(r,t,,\, -)ataA'IIph(r',t,A, Xl(.5

All of the creation and destruction operators on the right hand side of this expression are

explicitly paired, and all are summed over. In each of these expectation values there are

many terms that contribute; contributing terms are called correlated if the index of one

of the paired phonon operators is identicle to that of another pair. In the large N limit

all correlated terms have a factor of N - 1 that is not associated with a sum and hence

14
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vanish as the number of lattice atoms becomes infinite (see Appendix A). This vanishing
p..

of correlated contributions allows each of these thermal expectation values of a product of

operators to be written as a product of expectation values

p K~I'tr~t)~IIr~,t)) ( hi h Ort)h Kt)p 'th

+ , ""- (nA + )KlP,(rt,

+ KnXhr t ~ ' 'lp,(r, tA -))th1 (2.16)

Although the left hand side of Eq. (2.15) and the first term on the right hand side of the

same equation appear similar, the difference is that in the quantity on the right hand side

all the phonon operators in each factor are explicitly paired while in the quantity on the left

hand side each factor contains unpaired operators that when paired with operators from

the other factor give rise to the rest of the terms on the right hand side of the equation.

D. THERMALLY AVERAGED AMPLITUDES.

Thermally averaged n-phonon-change amplitudes can be defined by the thermal expec-

tation value of the n-phonon-change amplitude-operators, in which we thermally average

the paired phonon operators in the particle amplitude-operator. These thermally averaged

amplitudes can be equivalently defined by taking the thermal expectation of the product

of some phonon creation and destruction operators, which have the time dependence of

the uncoupled lattice, with the amplitude-operator. This equivalence results from there

being only one term in Eq. (2.13) that does not have any unpaired phonon operators when

multiplied by the product of phonon operators. The zero- phonon-change amplitude

oph(r -t) (,'Oph(r) (2.17)

15
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is the thermally averaged amplitude for the particle given that the lattice is in its initial

state. We show that this amplitude describes the elastic scattering of the particle. There

are two types of one-phonon change amplitudes, those that are the thermally averaged

amplitudes for the particle given that the occupation of exactly one phonon mode has

increased by one

(rtA+) /''(rtA+)V (aA(t)(r,t)), (2.18)
1ph~~' Iph\~1~th (tiA + 1) (.t

and those given that the occupation of exactly one mode has decreased by one

flph(rt,A) ph KtA-at()t(r,-t) (2.19)

These amplitudes and the further n-phonon change amplitudes describe the inelastic scat-

tering of the particle. The density matrix can be written in terms of these thermally

averaged amplitudes and the thermally averaged occupation numbers of the lattice modes

as (see Eq. (2.16))

+ (r, +)(nA +1) biphrt,A, +)
A

+ OIph(r, t, A, -)nAb1ph(r', t, A, )] (2.20)

The advantage of writing the density matrix in terms of the thermally averaged amplitudes

is that these amplitudes obey a hierarchical set of equations of motion and do not need to

be explicitly thermally averaged.

The equation of motion for the zero-phonon-change amplitude, 0ph, in which none of

the lattice mode occupations have changed, is found by thermally averaging the equation

16
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of motion (2.9) for the amplitude-operator

it -0ph(rt)= Hpart(r)tkoph(rt)+N  '[(nA + 1)VA(r)Oiph(r,t,A,+)
A (2.21)

+ nAVA(r)Iph (r, t' A,-)'.

The equations of motion for the one-phonon-change amplitudes, in which only one phonon

mode occupation has changed, are found by thermally averaging the the same equation

of motion after it has been multiplied by the appropriate creation or destruction operator

and then scaling the resulting equation by the prefactor in Eqs. (2.18-19)

i- - WA -Oph(r~tA, +) =Hpart(r)Oph(r~tA, + ) + V;(r)Ooph(r,t )

1 [ "
+ N (nA, + 1)VA, (r)02ph (r, t, A, +, A', +) (2.22)

+ nAt VA,(r)k2ph (r, t, A, +, A',

The u)A term on the left hand side of the equation comes from pulling the time-dependent

creation operator through the time derivative. The zero-phonon-change term on the left

hand side comes the term in the last sum when A = A'; for this term the two explicit

operators (one from the premultiplication and the other from the potential) are paired

together instead of with two unpaired operators in the amplitude-operator and the ex-

pectation becomes the occupation of that mode times the zero-phonon-change amplitude.

The correlated contributions are again negligble because of unbalanced factors of N - 1.

The equations of motion for the two-phonon-change amplitudes can be defined in a

manner similar that for the one-phonon-change amplitudes, leading to a hierarchical set U
of equations of motion. This procedure for calculating thermally averaged properties is

quite general for any system in which a few degrees of freedom are coupled to an infinite %,

phonon system. The approximations we have made up to this point have been made just

for the clarity of the presentation. For instance, the inclusion of anharmonic terms in the C-

interaction potential just complicates the equations of motion for the thermally averaged -
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amplitudes. In this case the n-phonon-change amplitudes would be coupled to more than

just the (n - 1)- and (n + 1)-phonon-change amplitudes. Even though this approach is an

exact solution to the scattering problem, a hierarchical set of equations of motion is useful

only if the higher order phonon-change terms are unimportant. For the contributions of

the n-phonon-change terms to become unimportant in the limit that n goes to infinity, the

coupling between the phonons and the scattering particle should be weak as is the case for

thermal energy helium and molecular hydrogen scattering.

III. ONE-PHONON APPROXIMATION

For systems in which the inelastic scattering is weak, we truncate the set of thermally

averaged amplitudes to include only zero- and one-phonon changes. The equations that

describe this approximation come from those of the previous section with the higher order

.)honon-change amplitudes set to zero. The equation of motion for the zero-phonon-change

amplitude is unchanged because the interaction potential we used included only the term

linear in the phonon coordinates, i.e.

t- Hpart) oh(r,t) = -- nVA((r0h(rtAc). (3.1)-at N ,

We have made the one-phonon-increase and one-phonon-decrease amplitudes look similar

by defining a notation; a + or -, which refer to a net phonon increase or decrease,

respectively, after the interaction, so that nA+ n, + 1, n A = nA and VA + V* VA.

In this notation the equations of motion for the one-phonon-change amplitudes are simple

because they are only coupled to the zero-phonon-change amplitude

-W ow -lpart) 00,hr~,Ac V)art'(r, t). (3.)

In the approximation, the thermally averaged density matrix contains contributions from

18
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only the zero- and one-phonon-change amplitudes

P(r, r', t) = 0Oph(r,t) Oph(r',t) + -Ziph(r,t, , 1) ph(r',t, ,a)n AG. (3.3)
) ,a "

If the density matrix is evaluated at equal postions and integrated over all space it is

constant in time

d t d r P (r, r, t) 0. (3.4)

This can be seen by taking the time derivative inside the spatial integration and using

the equations of motion to replace the time derivatives, then the Hermitian properties of

the Hamiltonian can be used inside the integration to cancel all of the terms. The equal

position density matrix is just the probability density for the scattering particle summed

over all of the possible states of the lattice. That it is constant in time means that the

one-phonon-change approximation is a unitary approximation. The same arguments apply

to any finite phonon-change truncation of the set of amplitudes which will also be a unitary

approximation.

IV. STATIONARY STATE SCATTERING

In this section we present the stationary state scattering results for the scattering

probabilities, discuss the problems that arise in stationary state scattering theory when

the zeroth order Hamiltonian has bound states, and show how the scattering probabilities

can be calculated form the asymptotic forms of the scattering state wavefunctions. Central

to the derivation of these results (see Appendix B) is a limiting process in which the initial

momemtum uncertainty of the wavepacket goes to zero. Taking this the limit allows the ,

scattering to be calculated in terms of stationary state eigenfunctions of the Hamiltonian. -

The scattering from the surface can be described in terms of the scattering state

solutions of a Lippmann-Schwinger equation containing the static surface potential. The

.. .. . . . .° . . .- . . ..-. " . . i _:' - '= -- "
:-. ."- . . -. . .-..' " -. ..- . , -.' - _. , ' ,,'" " ".-' -. . ." " '.""n- :" '"'" -" ' ~ d" ' " -



state Xi-I is a scattering state with outgoing boundary conditions and is defined using a

Lipprnann-Schwinger equation with the advanced free particle Green function C

'-'(r,k) ek r J d3 r' ' (r, -r, Ek) V (r' )x ' ,- (

f!

Scattering states with incoming boundary conditions, X can be defined in the same

manner using the retarded Green function. The bound states of the static surface potential

are defined by

(Hpart - EnK) X(r,n,K) = 0;

J d3 r IX(r,n,K)12 = A. (4.2)

where A is the area of the surface and n indexes the bound states at each value of K. A

complete set of states consists of both the bound states and either the incoming or the

outgoing scattering states.

The propagation of a particle in the presence of the static surface is described by a

retarded static surface Green function G' defined by

[E - Hpart + i7G'(r,r',E) 6 (3)(r - r'), (4.3)

together with the boundary conditions that in the limit that as z goes to infinity, with z'

finite, the Green function behaves like an outgoing plane wave. We use this Green function

to write scattering states in the presence of inelastic scattering.

The scattering states in the presence of the coupling to the phonons are defined by a

Lippmann-Schinger equation similar to those with no coupling by using an outgoing static

surface scattering state and the retarded static surface Green function. The Lippmann-

Schwinger equation reduces to a set of equations coupling the different multi-phonon am-

plitudes

o r, k) x' (r, k) - r' , Ek)N Y n A VA(r') 'l ph (r', k, A, , (,..'
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k, A, ,'r •r (r ' k U))"A

zerolh'(+1 '[ ,Aa - d~ ' G (r, r', Ek - awA)% x(r)0VhX(r',k). (4.5) ;

There is no boundary term on the right hand side of this last equation because the boundary*

conditions are chosen so that the incident amplitude in the one-phonon-change states is ,

zero.

A. TRAPPING.

The bound states of the static surface potential appear as poles as a function of energy

in the static surface Green function. Hence the one-phonon-change amplitudes diverge as

a function of the phonon energy as the final state energy Ek - awA becomes equal to a

bound state energy with parallel wavevector equal to K - uQA. These divergences, which

arise for finite temperature in any finite phonon-change truncation of the scattering states

and for zero surface temperature in any approach, are due to trapping on the surface. A

stationary state implies a constant incident flux of particles which leads to the paradox

that the number of trapped particles increases continuously. This continual build-up of

particles means that there is no time independent scattering state unless there is absorption

of probabilty from the frcm the bound state amplitudes; this absorption (and the resolution

of this pardox) is provided by the imaginary part in the Green function. In the limit that

the imaginary part of the Green function goes to zero all of the absorption, which is

proportional to r/, takes place from the bound state amplitudes because they are diverging

proportional to t7-1. The limit q - 0 is well defined and produces a stable limiting value

for the trapping probability (see Appendix B). Even though these scattering states involve

a loss of probability due to trapping, the one-phonon approximation we are describing

remains unitary.

The stationary state scattering wavefunctions also obey a coupled set of Schrdinger

21
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equations with the infinitesimal imaginary part included

Hpart - Ek -, o(r, k) = VA,(r ) n" (r'k,A, (4.6)
A'ar

,,part - (Ek - =WA) - V; (r).?phk(r,k) (4.7)

Solving these equations with a finite value of n remedies the divergence in the one-phonon-

change amplitudes (see Appendix B). In practice it is simple to find a finite imaginary

part that is small enough that that the solutions of these equations for finite ?7 give the

same results as those in the limit that t7 goes to zero. In the numerical calculation that

we describe in section VI we choose to solve the Schr6dinger equations instead of the

Lippmann-Schwinger equations because using the latter would require either storing or

recalculating the static surface Green function, G'.

B. SCATTERING PROBABILITIES.

To describe the scattering probabilities in the presence of the static surface potential,

which can not be treated as a perturbation, we have to calculate the matrix elements of

the wavepacket with the outgoing scattering states of the stat., surface potential. This

approach is quite similar to that of the distorted wave Born approximation, and in fact

it is a self-consistent improvement of that approximation. In particular, the , robability

to scatter into a state with a wavevector kf is given by the square of the matrix element

between the wavepacket and the outgoing scattering state solution of the static surface

P(kf,t) (4 K (t) x-(r~kf)) K\'"(r~kf) 4(t)))t
/ d'r X!-'*(F,kf v'*' (l,t.)1(

+ Jd . d 3r x(-)'(r,k) kr,t, (, ),

22
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In Appendix B we show that the first term gives the elastic scattering and the remaining

terms give the inelastic scattering probabilities. The elastic and inelastic scattering in

Eq. (4.8) can be written in terms of matrix elements of the the interaction potential

v, ith respect to the zero-phonon-change scattering state amplitude and the outgoing static

surface scattering states. In this form the inelastic amplitudes look like a typical golden

rule rate in which the interaction potential causes a transition from the initial state to

the final state. Note that this approach uses the incoming zero-phonon-change amplitude

instead of the incoming static surface scattering state.

After sufficiently long time such that all of the non-trapped particles have left the

surface the probability to have scattered inelastically into a final state with wavevector kf

is given by (see the discussion following (B6))

P, nei(kf) = -AN __n)A, d'r X(-)*(r,k kVs r, .,
-rJi A AVor)_ ph ,,

Sa (4.9)

(2 7r)b ( Ek, - awA - Ek,)

This result is identical to the distorted wave Born approximation result with the zero-

phonon-change amplitude replacing the incident static surface potential scattering state,

i.e. using the left hand side of Eq. (4.4) to replace the first term on the right hand side

of Eq. (4.4) in Eq. (4.9). This expression illustrates why this approach is a unitary

extension of the distorted wave Born approximation because the elastic wavefunction from

which the inelastic transitions are made is calculated self-consistently with the inelastic

states to which the transitions are made. Furthermore we see why the distorted wave

Born approximation is not unitary and this approximation is; in the distorted wave Born

approximation when a particle scatters inelastically the flux stays in the elastic channel

and continues to scatter leading to an overcounting of the inelastic scattering, whereas in

this approach the flux is removed from the elastic channel leading to a flux conserving

approximation. The trapping probabilities are the probabilities to be in one of the bound

2 3



states of the static surface potential and are given by a similar expression with the outgoing

scattering state replaced by a bound state

P~nel!nKi) Ac~Jd r xC(-)(rnK)V (r)iW" (rk)

(r)(Ek, - ou., E,K)

The first term in Eq. (4.8) gives the elastic scattering probability which can be shown

to be

P11 (k) f Z f(27r)6(Ek - Ekf)(2r)6 2 (K, Kf - G)
G kZ%

R(k 1 ,kJ) + d3, djT X kf E r, r, kYO(+h (r', j

where R(kf 1 k,) describes the amplitude to make a transition from the incident state k,

to the final state kf by scattering from the static surface potential. It is proportional

to the matrix element between the incoming scattering state and the outgoing scattering

state. The sum over surface reciprocal lattice vectors G makes explicit the possibility of

elastic diffraction (or inelastic scattering due to internal excitations of the molecule as we

discuss below) in the elastic scattering probability. The second term in the absolute value

is the effect of the inelastic scattering on the elastic scattering; it is written in terms of the

self-energy given by

E (r, r', Ek) ~ ~n~a V.A(r) G'(r, r', 4k uo)j(r1" (4.12)

A~ C7

This is the Born approximation to the self-energy of the full scattering system and can

be understood in terms of its constituents: the potential V causes a transition to a one-

phonon-change state, the molecule propagates with the energy Ek - a until the potential

causes a transition back to the zero- phonon -ch ange state. This process is summed over

the possible phonons, weighted by the thermal occupation of each paonon mode.

24
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The inelastic scattering probabilities can also be directly calculated from the asymp-

totic form of the one-phonon-change scattering states. The probabilty to scatter into a

particular final state is given by the flux density in the one-phonon-change amplitude far

from the surface divided by the incident flux and summed over all phonon modes that

satisfy energy and momentum conservation

Ptnel(ki) li kzf 1 A ?t0.(h (r, ki, A,P" ~k)2_0i0Eo-- kz N 1n p th~r

G Aa (4.13)

zf (27r)b(Ek- awA - Ek,)(2,r) 26(2)(K I - - G - Kf).

The trapping probability can be calculated from the behavior of the one-phonon-change

amplitudes in the limit that the small imaginary part in the Green function (or Schr6dinger

equation) goes to zero. Calculating the scattering state solution with a finite imaginary

part leads to the probability of absorption due to trapping. The trapping probability is

then equal to the probability of absorption divided by the incident flux summed over al

the phonon modes that satisfy parallel momentum conservation

Plnei(n, Kf) =lim d 1rJ ik , 2 ,

G AC (4.14)

(27r) 6 (Ek, - UwA - EK,)(27r)2 b( 2)(K, - QA- G -K).

Similarly to the inelastic scattering probabilities, the elastic scattering probability (includ-

ing diffractive and internal transitions) can be shown to be equal to the outgoing flux

divided by the incident flux

k k,(+) , ri 2
Pet(kf) = Zli N--, r, pht) - (k' (4.1)

G z%(4.15)
___ (27r)6(Ek, - Ek,)(27r)e61 e)(K, - G - Kf).
m

These last three expressions (4.13-15) are used to calculate the scattering probabilities

once we have solved for the scattering states using Eqs. (4.C-7). When integrated over all

momenta and summed over all bound states, these probabilities sum to one because this

is a unitary approximation.
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V. APPROXIMATIONS ON THE POTENTIAL

Although the equations presented in the last section could be solved for an arbitrary

form of the potential, we show in this section, starting from a completetely general form of

the interaction potential, what assumptions lead to a Hamiltonian for which the scattering

can be easily calculated and what form the equations of the last section take when applied

to this form of the Hamiltonian. In particular we choose a Hamiltonian for a flat surface

so as to decouple the motion parallel to the surface from the motion perpendicular to it.

This decoupling allows a much simpler numerical calculation of the wavefunctions.

The Hamiltonian consists of the kinetic energy of the scattering particle, the lattice

Hamitonian, and the potential that couples the scattering particle and the lattice. Later

we regroup the terms in the pattern of Eq. (2.3), but here we keep all of the coupling

terms together. The Hamiltonian for the general form is

H- = Tprt + Hiat + V. (5.1)

The kinetic energy of the particle, Tpart, here a molecule, consists of the translational

kinteic energy of the particle plus its rotational kinetic energy. We neglect vibrational and

electronic degrees of the molecule because the excitation energies are much higher than

the other energies in the scattering problem. Accordingly

Tpart 2 + L (5.2)

where L is the angular momentum operator for the molecular rotations (a three dimensional

vector in spite of its being upper case) and I is the moment of inertia. The orientation of the

molecule is specified by the angle of the molecular axis with respect to the surface normal

0 and the angle of the orientation around the surface normal €. The lattice Hamiltonian

is the same as it was in the previous section Eq. (2.4)

' 1 a wAaaA. (5.3)
2
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The displacements of the lattice atoms can be expanded in terms of the normal modes of

., the lattice23

1 1 (at +a, 54Zu-v e q"P(A, ) (2MuwA + a1 ; = -Q . (5.4)

Here A indexes the normal modes, Q, is the wavevector of the mode parallel to the surface,

w is the frequency of the mode, and e(A, Zn) is the polarization vector, which depends

on the distance of the atom from the surface because there is no translational symme- -

try normal to the surface. The polarization vectors obey the following orthonormality

condition

S e(Az, z) . e(A',z)e--R' (QA-Q1,) = A,. (5.5)
n

Finally aA and at are the creation and destruction operators for the phonon mode.

A. INTERACTION POTENTIAL.

In general the interaction between the scattering particle and the lattice depends on the

position of all the atoms in the lattice and all the molecular coordinates. Since the mean

square displacements of the lattice atoms are small compared to the characteristic lengths

of the potential a Taylor series expansion of the potential in terms of the displacements of

the lattice atoms should converge rapidly

av
V(r,O,0, {u,}) =Vo(r,0,0) + ,}=oUn 'a'

n, a (),QU,=+a2v fUOnCu, (5.6) i

+ ,, Unm { auau 1,}= .I

We truncate this expansion at the term linear in the phonon coordinates, consistent with

the one-phonon-change approximation we have made previously.

Now we regroup the terms in the Hamiltonian so that all the terms that are independent

of the phonon coordinates are grouped together.24 In addition we make part of the flat

27



surface approximation - we ignore any dependence on the postion of the particle parallel

to the surface in the first term in the potential -

Hpart T Tpart + V(z, 0). (5.7)

The rest of the flat surface approximation is made in Eq. (5.10).

The linear term in the coupling between the phonons and the scattering particle can

be written in a manner that makes it easy to see all of the approximations that we make

it= ~ ~ ZC 'ei(.+G.RVlc,(G,QA,,z, zn, O,¢)e,(az,) 1 (a +a,).

a,z,, A
(5.8)

We have expanded the coordinates of the lattice atoms in terms of the normal modes of

the lattice Eq. (5.4), and expressed the dependence of the potential on the position of the

particle in the plane of the surface by Fourier transforming the potential with respect to

the sum of the parallel wavevector of the phonon mode and a reciprocal lattice vector. The

dependence of the potential on the phonon wavevector and the reciprocal lattice vector is

given by an integral over the surface Wigner-Sietz cell of the potential summed over the

lattice sites in the surface

1 j d 2R Ze(QA+G).(R-Ut,) 8V (59)v, (G, Qk, Z, Zn, 0, d)= s .1,)0 59 £
a 8 uncz {U, =0

This is still a completely general form for the linear coupling term in the potential.

The approximation that we make for the coupling potential is given by restricting the

form that Via takes to

(OVo(z, o)\(.o -

Vl(G, QAZ, zn, ,,O') = -6azG,'06zOH(QA) z (5.10)

This expression includes the rest of the flat surface approximation; we keep only coupling U

to the phonon motion normal to the surface Sc, do not allowing umklapp processes (i.e.

G = 0), and do not allow coupling of any other component of the motion with rotation of

28 -
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the molecule around the surface normal. For simplicity we also assume that the scattering

particle only couples to the phonons through the projection on the top surface layer 6z0.

Finally we assume that the dependence of the potential on the parallel wavevector of the

phonon that is being coupled to and the dependence on the height of the particle above

the surface and its orientation are separable. The dependence on the parallel wavevector

is assumed to be Gaussian2 5

H(QA) = C-(Q /2Q ) (5.11)

This last assumption greatly simplifies numerical calculations because the only dependence

of the phonon amplitude on the wavevector of the phonon comes in through the net energy

transfer to the motion normal to the surface and an overall scale factor. This simplification

is discussed further below.

This separablity assumption can also be thought of as a local height approximation,i.e.

that the effect of the phonons is to locally shift the origin of the potential without changing

its shape in the z-direction. If this potential is then expanded in terms of the phonon

coordinates the coefficient of the linear term is proportional to the partial derivative of the

uncoupled term with respect to the height above the surface. Then the Fourier transform

of H(Q) gives the effect of a lattice vibration at one surface point on the local height of

the surface at another surface point as a function of the distance between the two points.

The local height approximation should be a good approximation close to the surface where

the effective height is dominated by the closest atoms; further from the surface where the

potential is determined by more and more atoms the approximation should break done.

Fortunately the inelastic scattering is dominated by the region of the potential close to

the turning point so that the breakdown of this approximation should not be important.

Within this approximation the neglect of the layers below the top is equivalent to assuming

that only the top layer affects the local in the potential. Again, this neglect should be a

good approximation close to the surface.

29



The interaction potential can now be written in a form similar to Eq. (2.6)

8it 9V0 (ZO) ~ MA-I*QkRat + h.c. (5.12)

The dependence on the height above the surface and on the orientation with respect to

the surface is independent of the phonon to which the scattering particle is coupled. The

dependence on the position parallel to the surface comes in through a factor that conserves

the total wavevector of the system parallel to the surface. The factor MA, contains all the

information about the strength of the coupling to each phonon mode

MAez(A,0)H(QA). (.3

Below we see that MA is related to a weighted phonon density of states.

B. SCATTERING STATES.

Because of the form of the potential we have assumed the parallel wavevector and the

azimuthal quantum number are conserved and hence the the form of the static surface

scattering states simplifies

(r, 0, ketmIf, 1 (zC ikffR e m).(5.14)

The remaining part of the wavefunction is independent of the incident parallel wavevector.

The zero-phonon-change amplitude, on the other hand, still depends on the full incident

wavevector because the coupling to the phonons depends on the parallel wavevector

OP eK Retm,+'(zo k Ir).(.5

The scattering probabilities depend on the matrix element of the derivative of the static

surface potential between these two scattering states. *
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The details of the phonons come into the scattering probabilities through a weighted

projected density of states

C(QW) n. iMA12(27r)6(w _ awA)(27r) 2 6(2)(Q - GQA). (5.16)

A ,a

This density of states is projected onto the surface layer by the e,(A,O) factor in the

definition of MA, and weighted by the thermal occupation of the modes, by the amplitude

of the mode, and by the the (local-height) phonon-cut-off function H(Q). The weighted

phonon density of states indicates how likely the particle is to interact with a phonon at a

particular frequency and parallel wavevector. It is also worth a reminder at this point that

C(Q,w) includes both phonon creation and anihilation events through a. The inelastic "

scattering probability is given by the product of three factors: the inverse of the incident

velocity, the square of the matrix element of the incoming zero-phonon-change state and

the outgoing static surface state with the derivative of the static surface potential, [!proof

reader, please leave commma, thanks] and the weighted phonon density of states

P:nel(kf,lf) z KX'~(z'kztl 'rn)( OV(z,0) +" ? 0, k i , li, rn)) (5.17)

C(K, -Kf,E i - Ef).

This equation is Eq. (4.9) rewritten in the form appropriate for the flat surface approxima-

tion. One nice feature of this approximation is that, given the matrix element for one final

z-component of the wavevector, the scattering probability for any wavevector with that

z-component can be calculated without recalculating the scattering state wavefunctions.

Since these wavefunctions are calculated by numerically solving a Schr5dinger equation,

the savings in computer time can be considerable.

To rewrite Eqs. (4.6-7) in the form appropriate for the flat surface approximation it

is useful to define some energies and wavevectors. The incident energy due to both the

energy in center of mass motion normal to the surface and the rotational energy is given

31
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by
k2 . z(1, + 1)

z 2m 21

-,.

The change in energy in motion normal to the surface and the rotational energy due to

exciting a phonon of wavevector Q and frequency w is given by

(K1 - Q) 2  K25
A2Ez = Ezi - Ez + + 2 "(5.19)

We are going to expand the motion of the molecule in terms of spherical harmonics with

respect to its rotation so it is useful define the kinetic energy the incident molecule would

have in each rotational state far from the surface

___ 1(1 +1)-
=__ =E , (5.20)2m 21

It is also useful to define the same quantities for the molecules that have scattered inelas-

tically k~j(AEz)  k2  :
-Z _ - AEz. (5.21)

2m 2m

These wavevectors are used in the Schr6dinger equations that the scattering states obey.

We can take advantage of the fact that the one-phonon-change amplitudes only depend

on the energy in the motion normal to the surface and in the rotational motion up to a

scale factor and calculate many of the amplitudes at the same time by scaling the one-

phonon-change amplitudes by MA and defining an amplitude that only depends on thc

change in that energy

0',+h (r, 0,, ki, 1, m, A,a) M e CtK-((Z. 0, AEz) . (5.22)

Here AEz is evaluated at w = acw, and Q =QA. If Eq. (4.13) for the inelastic scattering

probability is written using the wavefunction defined above, there is a factor IM 2 asci-

ated with the sum over phonon modes. If we integrate the inelastic scattering prohability
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p.

over possible parallel wavevectors we can define a new phonon density of states that is a

measure of how strongly phonons lead to a particular change in the energy

C( E) -- ( J 2Q  C(Q,w)(2,r)b -(AEQ (K Q) 2

(5.23)

_l.AIA 2(27r)6 awA A - (KE-,aQ) 2 - 2 ))A,°"

We use Eq. (4.13) rewritten using this phonon density of states to calculate the inelastic

scattering probabilities.

C. COUPLED-CHANNELS.

For molecular hydrogen scattering the potential only depends weakly on the orientation

of the molecule and the rotational energy splittings are comparable to the scale of the inci-

dent energies so that it is useful to formulate the scattering problem in a coupled-channels

approach by expanding the potential in Legendre polynomials and the wavefunctions in

spherical harmonics. These expansions can be truncated after a few terms. The expansion

of the potential and its derivative are given by

Vo(z,8) = V, (z)P(cos8), (5.24)

Vo z 0 - Z Vt'P(cOsO). (5.25)

Since the wavefunctions are expanded in spherical harmcnics, we need the spherical har-

monic matrix elements of the potential

VII(z) VI"(z) dfl 1i (O,O)Pi,(cosO)Ypm(O,€). (5.26)

To simplify the wavefunctions we suppress all of the initial conditions in v. Iiting down the

wavefunctions. To suppress the azimuthal dependence of the wavefunction we define a
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spherical harmonic with the azimuthal dependence removed

V

Yj ..(0) = e- Y, " (0, ).(5.27) ,,

Using this function we can write the expansions of the wavefunctions as

Zh ,) (z, Ym(0), (5.28)

(Z' O, AE) = Z11 (z,1, AEz)Ym(O). (5.29)

We solve for these wavefunctions numerically and use the solutions to calculate the ther-

mally averaged scattering probabilities. -r
The wavefunctions we have defined above obey a coupled set of differential equations

that are the formulations of Eqs. (4.5-7) in the approximations that we have made for the

potential

[I d' kZ .+l+ tz l') + +1vII, (Z)0p (Z, ?7 )'(h O.p
2m dz 2  2rn WP

(5.30)
f d " E- C (AE,) 1: VI',,I') 1' , A ,

(2 ) I,
II[1 d2  k21 (A E,) .(.

- .+ .771 Vd,) (z,1,AEz) + V7 V 1 ,(z) k (z I',AEz)
2mdz 2m lph .j~d~fl(5.31)

V"(z, 1) 00ph(z, t)

The first term on the left hand side of both equations contains the kinetic energy operator

minus the kinetic ener-, : each channel of the molecule far from the surface, the second

term contains the static s. ential that reflects the molecule away from the surface

and that couples different rot, channels within the same phonon-change amplitude.

The right hand side of the first eq- .- ion is the coupling of the zero-phonon-change ampli-

tude to all of the one-phonon-change amplitudes, and the right hand side of the second

equation is the coupling of each one-phonon-change amplitude to the zero-phonon-change
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amplitude. These terms are asymmetric because of the way in which the one- phonon-

change amplitudes where scaled. We solve these equations with an finite imaginary part

that is small enough that the results do not change if it is made smaller, typically it must.*

be much smaller than all of the widths of the resonances in the problem.

By discretizing the energy mesh for the one-phonon-change amplitudes these equations

could be solved by a large coupled channels calculation, but in situations in which the

sum of the distorted wave Born approximation results are not much greater than one it

can be faster to solve these equations iteratively. For the first iteration we set the one-

phonon-change amplitudes to zero and solve for the zero-phonon- change amplitude; this

gives the scattering from the static surface. Then we use this result for the zero-phonon-

change amplitude to calculate the one-phonon-change amplitudes; this gives the distorted

wave Born approximation results for the inelastic scattering probabilities. Then these

amplitudes are used to calculate the zero-phonon-change amplitude and the calculation

procedes iteratively.

.

D. SCATTERING PROBABILITIES.

The boundary conditions that the amplitudes must satisfy are that the amplitudes

decay to zero into the surface

li Z' 1), 0'(z 1, A E,) 0. (5.32)

The zero-phonon-change amplitude far from the surface consists of a unit amplitude In-

coming plane wave in the incident channel and outgoing plane waves in all the rotational

channels that have positive kinetic energy far from the surface

lim to zer) an e fR k ch>n0. (l33)
Z-.00 Oph
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Those rotational channels that do not have sufficient energy must also decay away from

the surface. The allowed channels for the one-phonon- change amplitudes are all outgoing

plane waves

I im W (z,l 1E,) = R(A E,) e k (A E,}z  k 2 (AE,) > 0. (5.3-1)
Z -O p 

Z

The forbidden channels must also decay to zero away from the surface. Solving the coupled

Schr6dinger equations Eqs. (5.30-31) for these boundary conditions give the scattering

probabilities.

The elastic and rotationally inelastic scattering probabilities are given by the outgoing

flux in each channel divided by the incident flux (see Eq. (4.11))

P -IRI (5.35)

The inelastic scattering probabilities are given by the ratio of fluxes times the phonon

density of the states due to the scaling of the amplitudes (see Eq. (4.9) and Eq. (5.22))

Pj(AE,) ki(AEz) C(A Ez) R(AEz) 2 . (5.36)
kZi

The trapping probabilites are due to the absorption caused by the infinitesimal imaginary

part in the Schr6dinger equation, and are given by the probability density in the bound

states times the absorption rate (see Eq. (4.10))

2m f2
1% kk2m >Z dz .) (z, 1, E - E,) C(Ez,- E). (5.37)Pn kkz2 z?

J.Since this is a unitary approxmation these probabilities all sum to one

P" dAEz P,(AE,) + > P, (5.38)
~LL~-.](27r)n

In the next section we calculate these probabilities for the case of IID scattering from

copper.

3636 -.
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These probabilities have been integrated over all possible parallel momenta that lead

to the same change in the energy in the motion of the molecule normal to the surface.

To recover the full distribution over all of the individual final states it is just necessary

to multiply the probability that has been calculated for the change in normal energy

appropriate to that final state by the integrand of Eq. (5.23). This intregrand is the

product of the phonon density of states and the delta function that determines the final

normal component of the energy from the properties of the phonons.

The flat surface approximation discussed in this section is useful because it greatly

reduces the number of final states that have to be integrated over. This reduction arises

from the decoupling of the motion normal to the surface from that in the plane of the

surface. It is a useful approximation for studying rotationally inelastic scattering from

uncorrugated surfaces because of this simplification. It is not a useful approximation for

quantitatively calculating scattering probabilities for corrugated surfaces, but by calculat-

ing the interaction of inelastic scattering with rotational transitions it should be possible .-

to qualitatively discuss scattering from a corrugated surface.

VI. RESULTS

To demonstrate the method presented in this paper we use it to calculate scattering

probabilities for 11D scattering from copper and compare the results with the results of

the same calculation using a distorted wave Born approximation. The main purposes of

this section are to demonstrate that it is possible to carry out the calculations that we

have outlined in this paper and to show how selective adsorption resonances and inelastic

scattering can affect each other. More extensive calculations are presented in a subsequent

paper along with the details of the potential, the phonon spectrum, and the numerical
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techniques that we use.

The differences between the distorted wave Born aproximation and this self-consistent

one-phonon approximation are most obvious at a selective adsorption resonance. At the

energies ntar th, resonace we have chosen to study, the HD molecule can scatter from the

uncorrugated static copper surface into either an 1=0 or an ]=I rotational state. Above

the resonance but near it most molecules leave the surface rotationally excited, in an 1=1

state. The 1=2 rotational state plays a significant role in the rigid surface scattering when

at this selective adsorption resonance the molecule can make a virtual transition into the

1=2 rotational state and the second lowest bound state of the potential. When the molecule

can make this transition it tends to spend a long time near the surface in this rotationally

excited state. The scattering probabilities are greatly affected by this resonance with the

elastic, 1=0, scattering probability increasing to one near the center of the resonance. These

scattering probabilities can be seen in the top panel of Fig.1, the solid curve is the elastic,

1=0, scattering probability from a static surface, and the dashed curve in the rotationally

inelastic, I= 1, scattering.

The shape of the elastic scattering probability as a function of incident energy is

characteristic of a Fano resonance. This is not surprising because selective adsorption

resonaces, Fano resonces, and Feshbach resonances all result from the coupling of a bound

state into a continuum of states, and all have similar lineshapes.

The elastic and rotationally inelastic probabilities sum to one for all incident energies

in the static surface calculation; the distorted wave Born approximation for the inelastic

scattering probabilities does not alter the static surface scattering probabilities. For the

distorted wave Born approximation to be valid the inelastic scattering probability should

be small compared to one. Far from the resonances the inelastic scattering probability,

seen in the dotted curve in the top panel of Fig.1, calculated using the distorted wave Born

approximation is about as large as it can be for this approximation to remain valid. At
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the resonance this condition is clearly not satisfied as the inelastic scattering probability

excedes unity. The total probabilities calculated using these methods range from about

1.3 to 2.1. The width of the Lorentzian that can be fit to the enhancement of the inelastic

scattering peak is the same as the width of the Fano resonace that can be fit to the static

surface scattering probabilities.

The bottom panel of Fig. 1 for comparison shows the results of the same calculation

done using the method developed in this paper. Since this approximation is unitary the

scattering probability is one for all incident energies; numerically unitarity is satisfied to

the same accuracy as it is for the static surface calculation of the elastic and rotation-

ally inelastic scattering probabilities. In this approximation the elastic and rotationally

inelastic scattering probabilities are affected by the inelastic scattering probabilities. The

peak in the elastic scattering probability is strongly reduced, much more strongly than

is the dip in the rotationally inelastic scattering probability. This suggests that dips due

to selective adsorption resonances should be easier to observe experimentally than peaks.

The width of the enhancement peak in the inelastic scattering has increased due to the

interaction between the selective adsorption resonace and the inelastic scattering; the in-

crease is roughly a factor of two. This increase in the resonance width indicates that the

inelastic lifetime of the resonace is comparable to the inherent rotational width.

VII. SUMMARY

The central features discussed in this paper are: (1) whun the scattering is weak,

we justify expanding the scattering wavefuctions in terms of n-phonon-change operator-

arnplitudes. (2) these n-phonon-change operators amplitudes are thermally averaged to

describe the averaged scattering ior terms of thermally averaged amplitudes, (3) the scat-
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tering probabilities are calculated using stationary scattering states when the interaction

time is long compared to the characteristic times in the substrate, (4) the calculation can

be simplified for some specific assumptions about the interaction potential, (5) and the

inelastic scattering and selective adsorption resonances affect each other. The first three

points reflect what we feel is the correct way to treat thermal energy helium and molecular

hydrogen scattering from surfaces on which they physisorb. The fourth point details the

simplication of the scattering calculation for a specific system in which the corrugation of

the surface does not play an important role and the fifth point is a result of applying these

approximations to molecular hydrogen scattering.

1. When the inelastic scattering is sufficiently weak that in a typical scattering event

only a few phonons are created or destroyed, the scattering process can be reasonably

be described in terms of how the occupation of the lattice has changed. Helium and

molecula~r hydrogen scattering at thermal energies from surfaces on which the~y physisorb

satisfy the weak inelastic-scattering criterion due to their low mass and their weak in-

teraction with the surface. Since the elastic scattering is a quantum mechanical process

and is both observable and distinguishable from the inelastic scattering, it is necessary to

treat the elastic scattering quantum mechanically and seperately from the inelastic scat-

tering. It is also important to treat the inelastic scattering in terms of the changes in the

phonon modes because the inelastic scattering probabilities reflect the discrete nature of

the phonon excitations of each mode. Doing the calculation self-consistently allows the

range of validity of the calculation to be extended to resonant elastic scattering situations

in which a perturbative approach would break down.

2. In calculating scattering probabilities it is useful to be able to thermally average

the results without having to do an explicit ensemble average of calculated scattering

probabilities. In this paper we have presented a method of doing the thermal averaging

by calculating the scattering in terms of thermally averaged n-phonon-change amplitudes.
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This part of the calculation is exact and is useful in any situation in which the expansion

in terms of phonon exchanges, discussed in the previous section, is applicable.

3. The scattering probabilities for these systems can be calculated using stationary

state scattering wavefunctions because the the resolution with which the energy of the

incident particle is defined is much smaller than typical phonon frequencies in the lat-
I.o

I.o

tice. Stationary state calculations are useful both for their simplicity and because they

emphasize the quantum mechanical nature of the scattering process that is of interest in

the scattering experiments. Since scattering experiments are performed for a better un- i-C.

derstanding of the gas-surface interaction potential and quantum mechanical scattering,

due its discrete nature, is usually more sensitive to the details of the potential, stationary

state calculations are better suited to discriminate between possible potentials.

4. The flat surface approximation is used because it speeds up the calculation while still

including the some of the important aspects of the potential and allowing the possibility of

studying resor,ance phenomena. It is an approximation in which we neglect the corrugation

of the surface while still treating the motion of the particle parallel to the surface. The

simplification comes from the seperability of the motion parallel and perpendicular to the

surface. This approximation also allows separate calculation of the importance of the

details of the potential and of the importance of the details of the phonon spectrum on

the scattering probabilities.

5. Our preliminary calculations show that selective adsorption resonances increase the

inelastic scattering at resonance condtions and that inelastic scattering broadens selec-

tive adsorption resonces. This last result will not emerge from a low order perturbative

• approach. Future work will be directed toward studying in more detail how inelastic scat-

tering and selective adsorption esonances affect each other as well as how finite substrate

" temperature affects the scattering process.
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APPENDIX A: THERMAL AVERAGING(DUE TO MDS)

In this appendix we discuss the thermal averaging procedure that we use in section

II of this paper. 26 We show that in the limit that the number of modes in the substrate

goes to infinity the contribution of correlated terms to the density matrix goes to zero.

When the correlated contributions are unimportant the thermal averages of products of

operators can be written as products of thermal averages of the operators. In particular we

are interested in the thermal averages of the amplitude-operators that describe the time

evolution of the amplitude of the scattering particle; these are the thermally averaged

n-phonon-change amplitudes we use to calculate the scattering probabilities.

The correlated contributions to the thermal expectation value are unimportant because

they are inversely proportional to the size of the lattice. Correlations give rise to this factor

of N- 1 by removing a sum over a number of terms proportional to the size of the system.

The form of the interaction potential, Eq. (2.12), leads to both a sum over the modes of

the lattice and a factor of N - 112 associated with each phonon creation and anihilation

operator when they occur in the density matrix Eq.(2.15).

Supressing the spatially dependent functions associated with each phonon operator

leads to the following form for all of the terms in the left hand side of Eq. (2.15)

(aAZ a',..a (Al)
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with arbitray numbers of creation and destruction operators. The only terms in this

expression that are non-zero are the terms which have no unpaired phonon operators.

When all the operators are paired there are the same number of sums over the phonon

modes, as there are factors of N-', each sum having 3N terms. The terms that contribute

can be in the form

N N N (a. ),h (A2)L_ . -- ,ala:_2 .a:A/

A1  A2  A

Here all of the phonon operators are paired in the same way that they are in the right hand

side of Eq. (2.15), which has been written in terms of operators and amplitude operators

that have the pairing already explicit. The uncorrelated terms are those in which we

replace the average of the product of paired operators by the product of the averages of

the paired operators

i a aA 1  (1a - Kax (A3)N a aI,)th- N at2aA2)th..- (l N ,)th (3

A, A2  A

In this expression all factors of N -1 are balanced by sums over the lattice modes. On the

other hand, correlated terms have at least two of the paired operators paired with each

other and are of the form

' N A A axi )th N Ka.... " A lth (

A, A2  A,

Since each of the correlated terms have at least one factor of N -1 associated with it that

is not balanced by a sum over the phonon modes these terms do not contribute in the limit

that the number of lattice atoms goes to infinity. The vanishing of the correlated terms

means that we can write Eq. (2.15) as Eq. (2.16), and then define the n-phonon-change

amplitudes that we use to calculate the thermally averaged scattering.

As an example of how terms from the right hand side of Eq. (2.15) contribute to the

right hand side of Eq.(2.16) let us consider one of the terms from the square of the zero-
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phonon-change amplitude-operator (see Eq. (2.14) for the definition of these operators)

: __ e,0, A  * " /A2

AP h\ 2  e wifl p hh (A5)

a

First consider the uncorrelated contributions, those in which A1 $ A2, rewriting the expo-

nential of a sum as a product of exponentials

KOph ~Oph)th N N z -kw z, OP~ OP ~"~~
A, , 1A1  -{n,} [-I4 e-iw"..

Now write the sum over all sets of occupation numbers of the products over all modes as

the product over all modes of the sums of the occupations for each mode

Zfl~flZ.(A7)EN :HE".i

{,n.}, =0

All the factors in the numerator other than thcse containing A1 and A2 cancel similar

factors in the partition function leaving

i *,,,% , ,A,*Z A2 Z nV-- e n -= Se)
'WOph ph k N E Oph sOph .-fewx n n (M)

, A24A, /-,n=OF n-r=O 0 ,

These two ratios just give the thermal expectation of the occupation of each of the modes

N ~ A~A, P~tOhfA 2  = Z ~ A l K(jA2'~~hA, A101 A, 01 l

(Ag)

These and all the other uncorrelated terms terms are the contributions to the right hand

side of Eq. (2.16). Now consider the correlated terms; the calculation for these terms

remains the same until

f j S-"on2e-fw n 1 ,,I 9 2 U
1 phOph W-Ooo e-BW,, N2  A'*oI, A 2Op= -Oph ooV Op h ) 2 ,nA + nA,)

,.,:= ) ('410)
\*Op h)/th Op h/t h

A 1
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Although this result is of a different form than the terms in Eq (A8), there is an additional

N-1 factor associated with losing a sum over the phonon modes so that the difference is

unimportant. This factor causes the contributions of the correlated terms to go to zero in

the limit that the number of lattice atoms goes to infinity. The restricted sum in Eq. (A9)

can be made unrestricted in the same limit because the error is also proportional to N- 1.

APPENDIX B: STATIONARY STATE SCATTERING

In this appendix we outline the derivation of the results in section IV of this paper.

First we show how to calculate the scattering probabilities in terms of matrix elements

of the zero-phonon-change scattering state by taking the limit that the initial momentum

uncertainty of the wavepacket goes to zero. Then we show that the same scattering prob-

abilities can be calculated from the asymptotic form of the zero- and one-phonon-change

scattering states.

The derivation of the results in this appendix requires four limits to be taken in this

order: the imaginary part qi that determines the boundary conditions goes to zero, the

wavepacket start far enough from the surface that it is not interacting with it, the initial

momentum uncertainty of the wavepacket goes to zero, and the final time minus the initial

time (tf - t) goes to infinity. The first two and the last limits are properities of description

of the calculation; the imaginary part has to be small enough that the normalization of

the incident plane is not affected by it, we choose to have the particle start in a state that

is independent of the surface, and want to measure the state of the particle after it has

ceased interacting with the surface.

The third limit is a property of the scattering system and may not always be valid. To

* take this limit (the initial momentum uncertainty going to zero) the interaction time of
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the scattering process should be longer than the characteristic time scales of the phonons.

The interaction time is set by the time difference from the time when the wavepacket first

interacts with the phonons to the time when all of the incident wavepacket has entered

the interaction region. A lower bound on the interaction time, set by the energy-time

uncertainty principle, is Planck's constant divided by the energy resolution of the incident

wavepacket. A lower bound on this lower bound is set by the energy resolution of the

scattering experiment. Since the times scales of the phonons are their oscillation periods

and the phonon frequencies go continuosly to zero, there are always phonons in the surface

with time scales longer than the interaction time. For this reason stationary state scattering

is not be able to describe all of the scattering processes, but if the interaction time is

longer than most relevant time scales and if the low frequency phonons do not dominate

the scattering process it should be able to describe the scattering within the resolution of

the experiment. In particular, if low energy modes are not important in the stationary

state scattering calculation they are not be important in a wavepacket scattering situation

because a wavepacket do not strongly excite modes for which the oscillation period is

longer than the interaction time.

To derive the martix elements for the scattering probabilities we expand the initial

wavepacket in terms of the scattering state solutions in the one-phonon-change approx-

imation. Then we use the spectral representation of the Green function to convert the

time dependent exponentials into energy-conserving delta functions in the limit that the

time difference goes to infinity. Finally the amplitude factors that describe the initial

wavepacket become a delta function.

The initial wavepacket can be expanded in incoming plane waves

f- J d 3 k a(k)e - kr Ek(t-t, (BI)

~(r~t) - (27T) 3

-. 4

where the time dependence gives the free motion of the particle. The expansion coefficient,
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a(k), is sharply peaked around the incident wavevector k i . The boundary conditions that

the Lippxnann-Schwinger equations for the zero- and one-phonon-change amplitudes obey

allow us to expand the initial wavepacket in terms of these scattering states with the same

coefficients as the expansion in plane waves

f d'k 1 .(+) e-1 .--Ek (t -t,)''
V~ph (r, t) a (k VO' (rh , k)° (B2) -

t d ' a(k) "'' +i(r,k,A,a)e- iEk(t - t ). (B3)Olph(r,t, A,a) =(B3l) .:

This time dependence gives the full time dependence of the scattering particle in the

one-phonon-change approximation. Inserting the equation for the one-phonon-change am-

plitude into Eq. (4.7), gives the expansion of the state of the scattering particle at any

time in terms of outgoing scattering states of the static surface. To write the scattering

probability in the form of Eq. (4.9) the one-phonon-change amplitudes are written in

terms of the zero-phonon-amplitude using the Lippmann-Schwinger Eq. (4.5), and the

static surface Green function is written in terms of its spectral representation

d[ X(-)((i,k))x(-)(r',k)" + [ ~ ~ ,Kxr,~)
GI(r,r,) (27r) 3  E - Ek + i2 E -EnK + 7

(B4)

The sum over n in the second sum in the spectral representation is restricted to run

only over the bound states for a particular value of K; since all of the EnK must be

less than zero, some values of K have no bound states for sufficiently large energy in

the motion parallel to the surface. The normalization of the scattering states allows one

three-dimensional spatial and one three dimensional k-space integral to be done trivially,

leaving

d3k e -tEk(t,-t)}
J2)3 Ek -w - Ekf + t'17

Ao (B5)

d3 r X(-"(r,kf)VA,(r) o h
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This expression is valid for any time, in particular the limit that tf - ti  oo in which we

calculate the scattering probabilities.

Expanding the square of the absolute value as a product of complex conjugates gives

P~f, tf) -~n~,121312a a(k)a~'
A'

-i(Ek -e7 ;-Ekf +i 17) (tf -t')

Ek TWA - Ek fi 7

i(Ek,- -A-Ekf-iy?)(t -t')

Ek, - 0r.-A - Ekf - (B6)

[d -r x(-(r, kf)VA,(r) (hI(rk)

d3 r X(-'*(r,kf)VA,(r)*iph+ ,

Each of the factors with time exponentials become energy delta functions in the limit that

the time difference goes to infinity and the imaginary part goes to zero, as can be seen by

converting each expression into a time integral. Because the interaction potential conserves

parallel momentum, we can factor from each of the matrix elements a parallel momentum

conserving delta-function

(27r)26(2) (Kf + + G - K), (B7)

which gives unity when integrated over. The expansion coefficients have chosen so that the

overlap integral over k is zero if one of the arguments is displaced by a surface reciprocal

lattice vector
d  k a(k)a(k + G) 0, (B8): (27r13.

and their modulus squared becomes a delta function as the initial momentum uncertainty

goes to zero. Integrating over the delta functions gives the inelastic scattering probability

result, Eq. (4.8). Replacing the outgoing static surface scattering state by a bound state

and performing the same manipulations gives Eq. (4.9) for the trapping probability.
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The derivation of the elastic scattering probability proceeds in the same manner, com-

plicated by the presence of outgoing states scattered from the static surface. The elastic

scattering from the static surface is described by a reflection coefficient, R(kf,k,) that

includes the possibility of diffraction

kzf/d'rx()(~f '(~2 E R(kf,k,)(2r)c5(2 1 (K. -Kf -G)z 6(E-Ef). (B9)
G ..

Inserting Eq. (4.5) into Eq. (4.4) gives an equation for the zero-phonon-change scattering

state in terms of itself and the self-energy, Eq. (4.11). The elastic scattreing probability

is given by inserting the resulting expression into the first term on the right hand side of

Eq. (4.7). After factoring out delta functions from all of the terms using the same tricks

that we used for the inelastic scattering probabilities for the terms in which the self-energy

appears, the derivation of Eq. (4.10) procedes in much the same manner as the derivation

of Eq. (4.8). The second term, containing the self-energy, in Eq. (4.10) cancels the part

of the elastic scattering intensity that has been lost to inelastic scattering. The energy

conserving delta function restricts possible outgoing states to those that have the same

energy as the incident particle, i.e. elastic scattering.

Rotational degrees of freedom only complicates these derivations by adding a rotational

state subscript to almost all of the factors. The rotational transitions can be treated in

the same way that diffraction was treated in the elastic scattering probability.

The rest of this appendix is concerned with the calculation of these scattering prob-

abilities from the asymptotic forms of the scattering states. For the inelastic scattering

probabilities we need the asymptotic form of the static surface Green function in the limit

that the z-component of the first argument goes to infinity

lim G'(r,r', E) = d2 e' r eK'Retkc.zX(-)*(r', k'),

z-oo,z>z',Ek>0 (27r)2 kt Z (B 10)

kz 2mE- K'2 ,
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where the K' integration is restricted to those values for which k > 0. Using this form

and Eq. (4.5), the asymptotic form of the wavefunction is

• -(+ ( k,A,) e d [ ) rd3r' x l - )*( r ' , k ' ) V )\ a (r l ' va(ph ' r '

Z-o,Ek>o kphrk OP

K' K - UQA,
kz 2  2m(Ek - awA) - K'2 .

(211)

The flux density in this state for large distances (squaring it and multiplying by the outgo-

ing velocity) divided by the incident velocity gives the contribution from each mode to the

inelastic scattering probability. Summing this result over all of the phonon modes weighted

by the thermal occupation of each mode and multiplying by energy and parallel momen-

turn conserving delta functions gives the result for the inelastic scattering distribution Eq.

(4.12). A similar treatment of the elastic scattering probability yields Eq. (4.10). These

results show that the scattering probabilities can be given by the flux in each outgoing

channel of the zero- and one-phonon-change amplitudes divided by the incident flux.

The expression for the trapping probability, Eq. (4.9) can be calculated from the

behavior of the static surface Green function in the limit that the infinitestimal imaginary

part goes to zero

lim G'(r,r',E) f d2 K x(r,n,K')x(r',nK') (B12)
.-. 0,E-.E, K J (27r) 2  E - E,,K, + 77

Using this expression the one-phonon-change amplitude at the bound state energy becomes

lim Oblph((r,k,A,a))=1 ( x(r,n,K')
F7-,t17 fJ(27Tr>

[ dar' x(r', n, K')V O ' h) (r' ' ' , k)]
V' A r (B (113)

K' =K - cQ,

En,K cm(Ek - Ca ).

Since the bound state wavefunctions are normalized to the area of the surface, Eq. (4.2),

squaring the amplitude, integrating the result over all spare, dividing by the area of the
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surface, and multiplying by the imaginary part squared gives the contribution to the

trapping for each phonon mode. Summing over all the phonon modes weighted by the

thermal occupation and multiplting by energy and parallel momentum conserving delta

functions gives the result for the trapping probability Eq. (4.13). This result can also be

derived from the absorption of probability from the system due to the small imaginary part

and trapping. In this case we have to evauate Eq. (B13) for energies near the bound state.

square the amplitudes, multiply by the absorption rate, 77, and integrate over both all

space and the energies near the bound states. For small enough 77 all the matrix elements

are constant so the energy integral is just the integral of a Lorentzian, which gives the

additional factor of t that appears in Eq. (P133).

The only difficulty that arises in using these results for the flat surface approximation

is that the the spectral representation of the Green function no longer has the same form

as it does in Eq. (B4) because the motions parallel and perpendicular to the surface

decouple. In particular in the bound state terms there are the same number of bound

states for every parallel momentum, some of which have a positive total energy. In a real

system the slightest coupling of the two motions would couple these positive energy states

to the continuum and they are no longer bound states. This defect of the flat surface

approximation is not important for one-phonon-change scattering at normal incidence but

would complicate the interpretation of the results for off-normal scattering conditions when

the final parallel momentum can be high.
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FIGURE CAPTION
i-

Fig. 1. A comparison of two methods for calculating scattering probabilities. The

system is HD scattering at normal incidence from a zero temperature copper surface. The

top panel shows as a function of incident energy a static surface calculation of the elastic

(solid curve, I = 0), and rotationally inelastic (dashed curve, I = 1) and a distorted wave

Born approximation calculation of the total phonon inelastic scattering probability (dotted

curve). The bottom panel shows the same probabilities calculated using the self-consistent

one-phonon approximation outlined in this paper. The structure in these curves is due

to a selective adsorption resonance in which the HD molecule makes a virtual rotational

transition to an 1 = 2 state in the second bound state of the static surface potential. The

three probabilities in the top panel sum to a total probability greater than one, especially

at the resonance, while the three probabilities in the bottom panel sum to one at all values

of the incident energy.
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